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The Efficiency of Pooling in the Detection of Rare
Mutations

To the Editor:
After citing a variety of uses of pooled testing in ge-
netic studies, Amos et al. (2000) suggested that mu-
tations in individual patients could be detected more
efficiently by being tested in pools. A typical muta-
tion-detection protocol requires that many segments
of the gene—for example, an amplicon consisting of
one or a few close exons—need to be evaluated for
detection of a mutation. Thus, even if the mutation
has a prevalence of ∼2%, as in the case of BRCA1 or
BRCA2 in Ashkenazim (Hartge et al. 1999), the prob-
ability that any segment will contain a mutation is
much smaller, perhaps on the order of .0005–.005.
The use of pools or groups of samples to identify
individuals or to estimate the prevalence of such a
rare characteristic has been extensively studied in the
statistical literature (Dorfman 1943; Sobel and Elash-
off 1972; Gastwirth and Hammick 1989; Tu et al.
1995; Brookmeyer 1999). Using the corrected formula
(see the erratum by Amos et al. [in this issue]) for the
number of runs or tests needed to identify individuals
with a mutation, one can fully appreciate the potential
of pooling methods. A variant of the grouping pro-
cedure is described that in some circumstances leads
to greater gains in efficiency when grouped testing is
utilized.

The sensitivity of an assay—that is, the probability
that a mutation will be detected, given that at least
one member of the pool has it—is a potential limiting
factor in practice. For screening of individuals to de-
termine their carrier status, the sensitivity should be
as close as possible to 100%. For detection of mu-
tations by multiplex single-nucleotide primer exten-
sion, 100% sensitivity was achieved in pools of size
10–20 but dropped to 80% in pools of 30 (Krook et
al. 1992). When denaturing high-performance liquid
chromatography was used to identify BRCA muta-
tions, 100% sensitivity was observed for several am-
plicons studied in groups of size five to nine (J. Rutter,
personal communication). Thus, for the largest pool
size for which a mutation detector is 100% sensitive,

it is helpful to know the largest mutation prevalence
for which pooling is efficient.

Suppose that the prevalence of a mutation in a sin-
gle unit (exon or amplicon) being studied is p and
that n individuals donate samples. For pools of size
r, the probability, g, that at least one member of the
pool has a mutation is . Assume that ther1 � (1 � p)
test is 100% accurate in classifying a pool as having
or not having a mutation. Since Y, the number of runs
or tests that need to be done without pooling is n, for
any pooling protocol in which the ratio of the ex-
pected value (y) of , the strategy saves runs.Y:n ! 1
We denote this ratio by F, for fraction of tests required
relative to individual testing; and the efficiency of a
pooling method is , the fraction of tests saved.1 � F
When the classical single-stage pooling method (Dorf-
man 1943), which retests, one at a time, the individ-
uals in a positive pool, is used, the expected number
of runs needed to completely identify all the mutations
in the segment under study in the sample of n indi-
viduals is

n
E(Y) p � ng . (1)( )r

The derivation follows. The probability that a pool
contains a mutation, which implies that it will test
positive, is g. Since all r individuals in the pool will
be tested, a positive pool receives a total of tests.r � 1
The probability that a pool is negative is ( ).1 � g

Those pools are classified with one test, so the ex-
pected number of tests per pool is (r � 1)g � (1 �

. Since there are pools, the expectedng) p 1 � gr r

number of tests is given by equation (1). Note that
the prevalence, p, enters into equation (1) because it
determines the probability, g, that a pool is positive.

Amos et al. (2000) also considered the situation in
which there is a probability b, of a false-positive result
in a pool—that is, is the specificity of the mu-1 � b

tation-detection process while the sensitivity remains
perfect. The same reasoning that led to equation (1)
shows that the expected number, y, of runs or tests is
given by

1 ry p n � [1 � (1 � b)(1 � p) ] . (2){ }r

From equations (1) and (2), we can calculate the
range of values of p for which the ratio of the expected
number, y, of tests or runs (Y) to the total sample size,
n, is !1, which implies that pooling is at least as ef-
ficient as individual testing. We also present the largest
p value, p.5, for which , which indicates thaty ! .5n

pooling will result in a substantial savings in the ex-
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Table 1

Mutation Prevalence for Which Pooling Is Efficient,
as a Function of Pool Size

POOL

SIZE

LARGEST PREVALENCE FOR WHICH ISy
n

!1 !.5

b p 0 b p .05 b p 0 b p .05

2 .293 .275 Not possible
3 .307 .295 .059 .043
4 .293 .284 .069 .057
5 .275 .268 .069 .059
7 .243 .237 .061 .054
10 .206 .202 .050 .045
12 .187 .184 .044 .040
15 .165 .162 .037 .034
20 .139 .137 .029 .027
25 .121 .119 .024 .022
40 .087 .085 .016 .014
50 .075 .074 .013 .012
75 .056 .055 .009 .008
100 .045 .045 .007 .006

Table 2

Optimal Pooling Size and Fraction of Tests Required,
Relative to Individual Testing, for Two Pooling Methods

p

OPTIMAL POOL SIZE (% OF TESTS REQUIRED)

b p 0 b p .05

Dorfman One Step Dorfman One Step

.2 3 (82.1) 4 (93.1) 3 (84.7) 4 (94.7)

.1 4 (59.4) 5 (60.9) 4 (62.7) 5 (62.6)

.05 5 (42.6) 8 (40.6) 5 (46.5) 7 (41.6)

.01 11 (19.6) 14 (16.0) 11 (24.0) 15 (16.9)
005 15 (13.9) 20 (11.0) 15 (18.5) 21 (11.6)
.001 32 (6.3) 45 (4.7) 33 (11.1) 47 (5.1)
.0005 45 (4.5) 63 (3.3) 46 (9.3) 66 (3.6)
.0001 100 (2.0) 142 (1.4) 103 (6.9) 149 (1.6)

pected number of tests. For the case of perfect tests,
these values of p1 and p.5 are given by

1
1r1 2 � r r

p � 1 � and p � 1 � . (3)1 .5 ( )( )r 2r

When the specificity is , the equations become1 � b

1 1
1r r.5 � r1

p � 1 � and p � 1 � . (4)( )1 .5[ ]r(1 � b) 1 � b

In table 1, I present the values of p1 and p.5 that
are obtained from equations (3) and (4), as a function
of r, the pool size. The results for p1 indicate that
pooling in relatively small pools, up to size five or six,
can be efficient for values of . Moreover, poolsp � .25
of size �10 can save at least half of the runs, for
prevalences �.045, even with a 5% false-positive rate.
Indeed, a small lack of specificity does not have a
major impact on the range of prevalences for which
pooling is useful. For the exons and amplicons oc-
curring in DNA mutation research, in which the prev-
alence of a mutation at a specific segment being ex-
amined is likely to be near .001, pools of 40–100
individual samples would be quite efficient. Of course,
this assumes that the sensitivity of the test remains
perfect in such samples. Thus, the major limitation in
the use of pooling techniques is the maximum size of
the group for which the sensitivity of the test is es-
sentially 1.

For a specific prevalence p, the optimum pool size
is obtained by differentiating equations (1) and (2),
respectively, and by setting the derivative to 0. When

the test used has perfect sensitivity and specificity, r
satisfies

1
r ln (1 � p) � ln ln p �2 ln r ;( )1 � p

when the specificity is 1�b, the optimum pool size r
satisfies

1
ln (1 � b) � r ln (1 � p) � ln ln p �2 ln r .( )1 � p

The values of r that yield the optimum pool size for
a range of prevalences is given in table 2. A small
false-positive rate ( ) does not have a notice-b p .05
able impact on the optimal group size but does di-
minish the efficiency gain in the very-small-prevalence
setting when large pools are possible. The results in
table 2 indicate that pooling strategies have a greater
potential of improving the efficiency of mutation test-
ing than previous results had indicated; for example,
when , the data in table 2 indicate that, forp p .01
the Dorfman procedure, the optimal pool size is 11
and the expected number of tests is 20%–24% of the
number, n, of individuals, depending on whether

or .05.b p 0
Although a complex multistage sampling protocol

may not be appropriate when the optimal pool size
is !10 (Amos et al. 2000), a one-step procedure can
improve the efficiency of grouping. Consider a pool
size . If the pool tests negative, then all unitsr p 2m
are mutation free. When a pool tests positive, it is
divided into two pools of size m that are tested. For
rare mutations, usually only one of the two pools will
be positive, so only m further tests are needed. A sim-
ple upper bound, yu, for the expected number, y, of
tests used by this one-step method is obtained by as-
suming that, in a positive pool, if there are two or
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more positive individuals, both half-groups will test
positive and all r units will need to be tested. When
the false-positive rate for testing a group of size r is
b, it is reasonable to assume that the error rate of the
test for a pool with half as many individuals ( ) isr

2

. Denote the probability that a pool has exactly oneb
2

positive individual by . In this case,r�1h p rp(1 � p)
the expected number of tests for a pool is

b r rb
1 � g(2 � r) � h � 1 � (1 � g)b 2 � . (5)( ) ( )2 2 2

The fraction, F, of tests needed relative to individual
testing is times equation (5). When , the upper1 b p 0r

bound for F for the one-step method becomes

n hr
y p 1 � g(2 � r) � .u ( )[ ]r 2

The optimal pool size and fraction of tests with regard
to the size, n, of the population screened, as required
by the Dorfman and one-step procedures, are given
in table 2. When the tests are perfect, the one-step
procedure does not yield a substantial increase in ef-
ficiency until fairly large pools of a very-low-preva-
lence mutation can be pooled. The one-step method
provides efficiency gains over a larger range of prev-
alence values and modest pool sizes when there are
false-positive pools. This occurs because those pools
are truly negative and because there is a very high
probability that the two half-pools will be classified
correctly by the two tests.

The results indicate that pooling should be quite
helpful when a large population is being screened for
relatively rare genetic mutations, especially when the
prevalence of a mutation in an exon or amplicon is
likely to be !.001. As improved technology enables
larger pools to be examined (Zarbl et al. 1998), the
efficiency of the one-step method should reduce the
costs substantially; for example, if the prevalence is
.005 and 20 individual samples can be pooled, the
number of tests needed is only ∼11% of the number
of individuals screened. Greater savings can be
achieved, at low prevalences, with multistage (Brook-
meyer 1999) or repooling (Munoz-Zanzi et al. 2000)
plans.

The formulas for the optimum pool size depend on
the prevalence of the mutation in the amplicon as-
sayed. Since this may not be known precisely, one can
adopt a two-stage procedure (Hughes-Oliver and
Swallow 1994) that changes the pool size on the basis
of the estimated prevalence for a partial sample. The
results in table 2 can be used to determine the group
size for the remaining analyses.

There are several other potential applications of
pooling to mutation detection. The methods discussed
both here and by Amos et al. (2000) assume perfect
sensitivity. In practice, errors occur, so it is useful to
use pooling methods to retest a sample of the screened
negatives, both to confirm that the sensitivity remains
essentially perfect and to ensure that individuals with
the mutation are not missed. Such a procedure has
been shown to be a cost-effective quality-control
method for blood screening (Gastwirth and Johnson
1994). Group testing, without identification of indi-
viduals, has also been shown to yield accurate esti-
mates of the prevalence of a rare disease or trait (Gas-
twirth and Hammick 1989), while preserving the
privacy of participants.
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